Using ASPEN to Automate EO-1 Activity Planning

Rob Sherwood, Anita Govindjee, David Yan,
Gregg Rabideau, Steve Chicn, Alex Fukunaga
Jet Propulsion | .aboratory
Cdlifornia Institute of Technology
Pasadena, California91109
aspen@aig.jpl.nasa. gov

Abstract--- This paper describes the application of an
automated planning and scheduling system to the NASA
Earth Orbiting 1 (EO- 1) mission. The planning system,
ASPEN, is used to autonomously schedule the daily
activities of the satellite. The satellite and operations
congtraints arc encoded within a software model used by the
planner. This paper includes a description of the planning
system and the associated modeling language. We then
discuss how we encoded the EO-1 spacecraft operations
with the modeling language. W ¢ concl ude with a
description of the end-to-end planning system as wc
envision it for HO-1.

TABLE Or CONTENTS

1. INTRODUCTION

2. ASPEN

3. MODELING LANGUAGE
Activities
Resources
States

4. Lo-1MODEL
Creating The EO-1Model

5. END-TO-END PLANNING SYSTEM
EO-1 Model In Action
Limitations of ASPEN

6. ConcLUSIONS

7. REFERENCES

8. BIBLIOGRAPHY

1. INTRODUCTION

Automated planning/scheduling technologies show great
promise in reducing operations costs by increasing
autenomy of EO-1 mission operations. The Artificial
Intel ligence (Al) Group at the Jet Propulsion laboratory

has been working on a system called ASPEN (A Scheduling
and Planning Environment). ASPEN [3] is a modular, rc-
configurable application framework based on Al techniques
[1], which is capable of supporting a variety of planning and
scheduling applications (similar to{4}). The primary
appl i cat ion area for ASPEN is the spacccraft operations
domain.

EO-1[5]isan Earth imaging satellite [o be launched in May
1999. The science payload on HO- | is an advanced multi-
spectral imaging device. Mission operations on HO-1
consist of managing spacecraft operability constraints such
as power, thermal, pointing, buficrs, consumables, and

teleccommunications. EO- 1 science goals involve imaging of
specific targets within particular observation parameters.
Managing FO-1 spacecraft downlink is particularly difficult
because the amount of data generated by the imaging device
is quite large and ground contacts are limited. In addition,
because science targets for EO-1 arc based cm short-term
cloud predictions, schedules mustbe gencrated daily.

Planning and scheduling spacecraft operations involves
generating asequence of lokv-level spacecraft commands
from aset of high-level science and engincering goals.
ASPEN encodes spacecraft operability constraints, flight
rules, spacecraft hardware models, science experiment goals,
and operat ions procedures to allow for automated generation
of low-level spacecraft sequences. By automating the
command scqucnce generation process and by encapsulating
the operations specific knowledge, ASPEN will enable the
1:0O-1 spacecraft to be control led by a small operations team
and thereby reduce costs.

2. ASPEN

ASPEN is an object-oriented system that provides a reusable
set of software components that implements the elements
commonly found in complex planning/sched uling systems.
These include:

An expressive constraint modeling language to alow
the user to define naturally the application domain

A constraint management system for representing and
maintaining spacccraft operability and resource
constraints, as well as activity requirements

A set of scarch strategies

A temporal reasoning system for expressing and
maintaining temporal constraints

A graphica interface for visualizing plans/schedules
(for use in mixed-initiative systems in which the
problem solving process is inter-active

Wc have implemented the lincar programming simplex
algorithm to optimize schedules for ASPEN. At present,
though, ASPEN is not making usc of it. I’ here arc hooks in
the code to add this and other optimization algorithm at a
later date.

The centra data structure in ASPEN is an activity. An
activity represents an action or step in a plan/schedule. An
activity has astart time, an end time, and duration. In

1 Activity ALI_data_take {

2 Fixed fi;

3 Tracking tr;

4 Duration = [1,60];

5 Constraint =

6 starts_after end of SAD_changer with (fi->sadl) by [100,300] ,
7 ends_before start of SAD_changer with (tr->sadl) by [16,16] ,
8 Contains SAD_user with (fi->»apl) by [4,4,0,10],

9 Contained_by SAD_user with (fi->sadl) by [300,300,1,161;

10 Subactivities = ALI_user_ data, AlL,I_dark_count;

11 reservat.ions = processor, array_power = 80;

12 }i

13

14 Activity SAD_changer ({

15 Sad_mode sadl;

16 reservat.ions = solar_array change_to sadl,

17 aperture must_be open;

18 3

Iagure 1 Activity Example

addition, activities can usc one or more resources. For more
details on ASPEN, scc [2,3].

3. MODELING LANGUAGE

The ASPEN modeling language allows the user to define
activitics, resources, and states as described above. A
domain model isinput at start-up time, so modifications can
be made to the model without requiring ASPEN to be
recompiled. The modeling language has a simple syntax,
which caneasily be used by spacecraft mission operations
personnel to create amodel. Each spacecraft model is
comprised of several plain-text files, which define and
instantiate activities, resources, and states.

Activities

As previousy mentioned, activities arc the central data
structure of ASPEN. An activity is a data structure that
performs a specific function. The example in Figurcl
includes an instrument data take activity and a solar array
drive state change activity. These examples will be used to
explain the components of an activity.

An activity is defined in line | and 14 of Figure 1. The
definition includes the name followed by a pair of braces
and a semi-colon similar to the C language syntax. These
arc the only required components of an activity definition.

Once the activity is defined, it can be instantiated in the
initial state file. Generally, this instance will consist of the
activity name followed by the instance name and a pair of
braces. Many of the components below that are specificd as
ranges can be fixed to specific values in the activity
instance.

Parameter-s arc generally used to store values in activitics or
reservations. Lines 2 and3 contain parameters defined
elsewhere in a parameters file. In this case, they arc
constants that represent state names. Parameters can also be
passed into activities from higher levclactivities (parent
activities). Line | 5 contains an example of a parameter that
is pawed into an activity. The parameter sad_mode is an
enumerated type variable that contains the current state
value of the solar array drive. Any onc of the state values

can be passed into the SAIJ .changer activity when called
from aparent activity.

The duration of an activity is given as a range [X, y], alist
{a b, c,d} or aconstant L.inc 4 defines the duration as a
range of 1-60 seconds. The time scae of the spacecraft
mission planning can also be specified. All ranges within
ASPEN can be specified from negative infinity to infinity.

If arangeis given for the duration, ASPEN will have more
flcxibility in considering different schedules. “I”his can result
in better-optimized schedules.

Constraints arc temporal constraints an activity must satisfy
wi(h respect to the (owner) activity in which the constraint is
defined. Thereare six types of constraints: starts_before,
starts_after, ends_before, cnds_after, contains, and
contained by. The first four constraint types include a time
range and a temporal relationship 1o the start of or cad of the
activity in question. For example, cm line 6 in Figure 1, the
Al .1_data_take activity must start after the endof the
SAD_ changer activity by 100-300 seconds. This constraint
tells the scheduler that the SAD_changer activity mast be
completed at least 100 seconds before the Al .1_data_take
activity starts. Using the same method, the start or end time
of any activity can be specified relative to the start or end
time of the owner activity. If the time duration is specified
as [0,0], the startor end times will coincide exactly. The
“contains’ constraint is used for activities that fall within the
owner activity. This constraint definition combines a
starls_ before start of and an ends_after end of pair of
constraints. For example, line 8 defincs a constraint for the
SAD_ user activity that is contained within owner activity
Al .I_data_ take. Thefirsttwo and last two numbers in the
constraint represent ranges of time, which separate the start
times between the two activities and the cad times between
the two activities. SAD_uscer must start exactly four seconds
(4,4) after- the start of AlL.l1_data_take but the cad time can
coincide with the cad time of Al .I_data_take or Up to 10
seconds (O, 10) carlier. This relationship is graphically
represented in Figure 2. Because the ALI_data_take activity
has a variable duration, ASPEN automatically chooses a
duration that satisfies the above temporal constraints.

ALl data_take

SAD user

Figure 2: Constraint Relationship: contains

The [contained_by] constraint is used for activities thatarc
the same size or larger thin the owner activity. For
example, line 9 defines a constraint for activity SAD_user
that starts exactly 300 seconds before the start of and ends 1-
16 scconds after the end of activity Al .1_ data_ take.

Subactivitics arc activities that can be scheduled any time
within the parentactivity subject to resource constraints
within the subactivity. Subactivitics arc similar to the
constraint-defined activities without the exact temporal
relationship between the parent and subactivitics. For
example, line 10 defines subactivities ALI_user_data and
Al 1 _dark_count. These activities must fal within the
temporal range of the parent activity Al. I_data_take. The
main difference between “constraint” and “subactivities" is
that “constraints’ can be satisfied by any activity in the
schedule. Subactivitics arc always created when defined
within a parent activity. “1'here is a onc to one relationship
from parents to subactivities.

Reservations are used to reserve a portion of a resource or
state for the duration of the activity. There arc two types of
resource reservations. atomic and aggregate. lL.inc 11 of
Figure 1 contains examples of an atomic reservation
(processor) and aggregate reservation (array_power). The
processor reservation reserves the processor for the duration
of the activity. No other activities can use the processor
during thistime. The array_ power reservation uses 80 units
of array_power for the duration of the activity. If the
array_ power were a depletable resource, the 80 units would
be reserved from the start of the activity until the end of the
planning horizon.

State reservation cither change the state of a state variable
orreserve a state for the duration of an activity. Linc16 of
Figure 1 changes the state of the solar_array state variable 1o
the value of parameter sad]. l.inc 17 of Figure | reserves
the "open” state of the aperture state variable for the
duration of the activity. If the aperture state variable was in
a state other than “open” prior to this activity, the scheduler
would have to create a state changer activity to change the
stateto “open. ”

Resources

Resources arc a description of a profile of a physical
resource over time. ‘1'here arc four types of resources:
atomic, concurrency, depletable, and non-depletable.

Atomic resources are physical devices that can only be used
(reserved) by one activity at a time. Examples of atomic
resources include: science instrument, star tracker, reaction

wheel, or CPU. Concurrency resources arc similar to atomic
except they must be made available to the activity before
they arc reserved. An example would be a tele-
communications downlink pass. The telecommunications
station would have to be made available before the
spacecraft could initiate a downlink. Non-depletable
resources are resources that can used by more than one
activity at a time and do not need to be replenished. Each
activity can use a different quantity of the resource.
Examples include solar array power and the 1773 bus.
Depletable resources arc similar to non-depletable except
that their capacity is diminished after use.In some cases
their capacity can bereplenished (bat(cry energy, memory
capacity) and in other cases it cannot (fuel). A summary of
the four types of resources is presented in Table 1.

Properties

Always available when not in usc,
only user at atime

Ex:science instrument, star tracker,
reaction wheel, dedicated CPU

Only available when made availablc,

only 1 user at atime
Ex: telecommunicat ions downlink

pass

Always available when not in use,
many usecrs canuse different
quantitics

Ex: solar array power and 1773 bus
Capacity is diminished after usc, may
or may not be replenished by another
activity

Ex: battery energy, memory capacity,
fucl

“1'able 1: Resource Types

Resource Type
Atomic

Concurrency

Norl-depletable

Depletable

The four types o f resources are defined in lines 1,6, 12, and
18 of Figure 3. The definition includes the name followed
by a pair of braces and a semi-colon similar to the C
language syntax. The type is onc of: atomic, concurrency,
depletable and non-depletable. The name and type arc the
only required components of a resource definition. Once the
resource is defined, it can be instant iated in the initial slate
file. Generally, this instance will consist of just the resource
name followed by the instantiated name and a pair of braces.
Note: concurrency resources are not yet implemented.

The capacity of aresource can be specified as a constant, list
or range. A range would be used if several similarresources

with specific capacities were defined when the resources
wereinstantiated.

] Resource ALT{

2 Type = atomic;

3 Capacity = 1;

4 i

5

6 Resource Solar_array {

7 Type = non_depletable;
8 Capacity = 600; // watts
9 }i

10

11

12 Resource warp_storage {
13 Type = depletable;

14 Capacity = 40000; // Mbits
15}

16

17

18 Resource Propellant {
19 Type = depletable;

20 Capacity = 15; // kg
21}

Figure 3: Resource tixamplics

An atomic resource has a unit capacity and does not have to
be explicitly set such as on line-3 of Figure 3. Depletable
and non-depletable resources definitions can contain a
minimum capacity such as in lines 9, 15, and 21 of Figure 3.

States

A dcvice, subsystem, or system may be represented by a
state variable that gives information about its state over
time. The state variable contains the state profile, which is
defined as an enumerated type. Some cxamples of possible
states arc: on, off, open, closed, record, playback, standby or
idle. States can bc reserved or changed by activities. A
state variable must equal some state at every time. Atthe
beginning of a planning horizon, this slate is just the dcfault
state. Figurc 4 contains two examples of state variable
definitions.

A state variable is defined in lines Tand 7 of Figure 4. The
definition includes the name followed by a pair of braces
and a semi-colon similar to the 'C'language syntax. Lines 2
and 8 contain a list of the states the state variable can
contain. The default state must be defined and must be onc
of the states in the list. Once the stale variable is defined, it
can bec instantiated in the initial state file.

The allowable state transitions between stales can be
indicated using the ‘transitions’ keyword with a forward (->)
arrow, abi-directional arrow (<->), or with the *al]’ keyword
(e.g., all<->all).

Parameters

The ASPEN modeling language includes parameters, which
arc variables or constants. Paramcters can consist of
integers, strings, floating points, boolcans, oOr lists or ranges
of any of these. Parameters can bc defined as enumcrated
types for a list of dates in a stale variable. Ranges of values
can also be used. Some examples arc:

« parameter string ALL mode { domain = (“data’ >, “idlc”,
“standby”, “oft™);) ;
« paramcter int warprange { domain=[1 ,40960];);

Inthe first example, the Al.]_ mode parameter can take On
any of the four Yalues in the list. In the second example, the
warprange parameter canbc any integer in the indicated
tange from | 1040960.

EO- 1 MODEL

10-1is an Earth imaging satellite that is part of the Ncw
Millennium Program of technology validation missions.
The nasa Goddard Space Flight Center is responsible for
project management. The purpose of EO- 1 is to validate
new technologics that can be used on futyre Landsat class
Larth remote sensing missions. In fact, EO-Twill be flying
in formation onc minute behind l.andsat-7, with the goal of
imaging as many of the same targets as possible. EO- 1 will
be using the Landsat 7 daily scenclist as an input file of
potential O-1 targets.

The main activity in HO-1 operations is the Advanced .and
Imager (Al.1) datatake. The Al.1l instrument contains six
separate detectors that output data simultancously. Onc
image takes a total of 24 seconds and consumes about 19
gigabits of data on the sol id state recorder (WARP).
RBecausc the capacity of the WARP is only 40 Gbits, it is
important to plan the data takes and downlinks to maximize
the amount of datarcturned. Duc to limited amount of
downlink time available, only four data takes pcr day can be
taken. Data takes can be prioritized based on the following
parameters:

« Cloud cover over the region to be imaged

« Sunangle at the region to be imaged

« Ability toreturn the data before overflowing the
WARRP recorder

« Images coinciding with [.andsat 7 images

« Imaging of scientifically interesting arcas

Fach BO - | data take has several conditions that must bc
satisfied before and after the data take occurs. These
conditions are listed below:

Before:
« Change the ACS modc to science
« Change thesolar array to afixed oricntation
« Open the All aperture
« Change the data rate to high rate mode

After:
. Close the ALI aperture
« Take one second of calibration data
+ Change the ACS, solar awry, and data rate modes
brick to the previous values

Each of these conditions is modeled as tempora constraints
in the AL data take activity. The data take activity itself is
only a 24-second activity. The constraints on the activity

1 State_ variable Al.I_sv (

2 states = ("data", "standhy", "idle", "off") ;

3 transitions - ("standby" ->"data", "data" ->"standhy", *idle" ->"standby",
"standby"->"idle", “off’’->""idle,’, "idle->off");

4 default_state = “idle”;

5 Y

6

7 State_variable aperture_sv {

8 states = (“open”, "closed") ;

9 transitions = ("open"->"closed","closed" ->"open"),

10 default_state = “closed”;

11

Figure 4: State Variable Examples

span period of five minutes before and one minute after the
bounds of the activity. The constraints on the activity could
have been modeled as subactivities. The reason we chose to
mode] these activities as constraints is because of their tight
temporal constraints. I'hc data take activity tweaks down
into 14 separate activitics as listed in Table 2.

ALl Scene Collection

ALl_data_take
ALI_user_data
ALl _user_standby
ALI_changer
SAD_user
SAD_changer

apenure_changer
engdata_user
engdata_changer
ACS user
ACS_changer
cloud_cover_changer

aperture_user sun_angle_changer

Table 2: EO-1Scicnce Activities

The ALImust be calibrated by viewing the sun or the moon
regularly. The sun calibration involves pointing at the sun
and changing the aperture filter several limes. The moon
calibration points at the lunar limb and pans across the moon
using each of the detectors. Similar to the data take
activitics, the calibrations involve several constraints, The
calibration activitics and constraints are listed in' 1’ able 3.

EO-1communicatio n activitics are modeled as follows:

1. An input file gives the times at which the ground station
isin view 01 the satellite.

2. The in view times are converled into a state variable
with the value ‘invicw’ or ‘outview.’

3.The planner chooses communication links during these
inview times.

4. The communicatio n link is broken down into uplinks (if
required) and downlinks.

ALI_sun_calibration
slew_to_sun
aper_test_changer
AL)_moon_ calibration
moon__cal_ms_pan
slew_to_moon
ramp_up_pitch_slew
ramp_down_pitch_slew
roll_ to_next_position
Table 3: EO-1 Calibration Activi cs

The EO-1model also includes initialization activitics for
power, propellant, and memory. These activities arc used to
keep track of consumable resources from the previous
planning period.

A key-word ‘command’ is used for activities that represent
an EO-1 spacecraft command, When the command keyword
is included in the activity definition, along with the
command name, the spacecraft command output file will
include atime tagged command for that activity.

The EO-1 spacecraft resources are modeled as either
depletable or non-depletable. It was not necessary to model
every physical device on EO-1because many devices
consumed a constant power and did not interact with any
spacecraft activities. The power of these devices iSincluded
in the power_initactivity. Theresources that arc modeled
arclistedin“1'able 4.

Non-Depletable Depletable
ALl Processor Rattery
S band_Receiver | Bus_1773 Warp_storage
Transponders Cat_bed_heater Propellant
solar. array WFF
ACDSE DSN
Warp

Table 4: EO-1 Resources

The HEO-1 ASPEN model has ten different state variables
which arelistedin Table 5. Most of these state variables arc
used to represent the state of a spacecraft resource. The
states arc used in activities that require a resource to be in a
particular state. These requirements are specified in the
reservations of the activity. For example, the EO-1data take
activity requires the WARP state variable tobe in record
modc during the period of imaging. This requircment
ensures that the data is being recorded during the imaging
operation. Activities arc defined that either change orusc a
particular state of a state variable. These acti vities usually
contain a command keyword that corresponds to an EQ-1
spacec raft command.

Creating the FO-1 Model

The modeling language has been designed such that it can
model a physical spacecraft system directly. It is a
descriptive language that allows an engineer to directly
represent the physical spacecraft information in the model.

in fact, the EO-1 model was created by an engincer (first
author, Rob Sherwood) who had no knowledge of the

software or its algorithms and procedures. He successfully
created the model by simply taking the EO- | spacecraft
information and pulling it into the modeling language
syntax. This process took three weeks, Ancther similar
model for the Spacccraft Interferomett y Mission took less
than two clays.

State Variables

Variable Possible States

Al 1 sv data, standby, idle, off

SAD_sv off, tracking, fixed

aperture_sv open, closed

aperture_test_sv | small, med, large, blank

engdata_sv high, low

ACS_sv nadir, low_jitter, standby, safe,
orhit_ adjust,

WARP_sv off, idle, reed, playback

Cloud_Cover_sv low, med_low, med, med_ high, high,
none

Sun_Angle_sv low, med, high, none

WEFE_inview_sv | in, out

Table 5:EO-1 State Variables

The modeling language is flexible and allows for different
ways of representing the same information. Thercfore, there
is no onc correct model for a given spacecraft. The EO-1
model is constrained to have certain state variables, for
example, as determined by the mission, but, on the other
hand, could have different ways of representing constrains
between activities.

END-TO-END PLANNING SYSTEM

The goal of this KO- 1 work is to produce an automated on-
board planning system for spacecraft commanding of the
EO-1 satdlite. The system will be validated after launch on
the ground. As a ground based planner, the inputs to
ASPEN include:

I.andsat-7 cloud cover and sun angle predictions
Current power-, propellant, and memory tevels
Sun, moon, and sky calibration requests

Ground station view files

Mancuver requests

Once ASPEN is dclivered to the EO-1 project, there will
only be minor changes made to the model to integrate
ASPEN into the existing operations. Wc plan to automate
the loading of the input files such as cloud cover and sun
angle predictions into AS PEN, and link the output schedule
of ASPEN directly to the existing EO- | so ftware. In fact,
the creation of theinput files can be invoked from external
calls from the ASPEN GUI. With ASPEN linked directly to
its input files through the GUI, the 110-1 planning process
will be scamless and efficient.

The output of the ground based validation of the planner will
be a text list of time tagged commands that will be translated

into binary spacecraft commands by the ground system load
generation utility. This utility is aready built into the EO-1
ground system.

The on-board planning system will require upload of the
ground station view files and mancuver requests. The cloud
cover could be obtained by using the Al Tscience instrument
to examine the cloLkIsbefore ascenc. After the image is
taken, the cloud data would be analyzed to determine if the
scene should be saved and downlinked. Clouded scencs
would be erased from the WARP and a new scenc would be
planned to take its place.

FEO-1 Model in A ction

Generating EO- | mission operations schedules is a fast
process. Given a set of EO-1requests, ASPEN will generate
a conflicl-free schedule within the order of afew minutes for
lengthy schedules, and within seconds for simpler schedules.
For example, for 162110-1 activities, it takes ASPEN 3.53
seconds (on a SUN Ultra-2) to produce a conflict-free
schedule. ‘1" here are no EO-1 schedules that take more than
aminute to schedule, but with other spacecraflt models with
more activities and Iengthier schedules, wc have seen a
maximum Of five minutes to produce a corrffict-free
schedule.

In addition to having the activity rcquestsspecified in
advance, the user can make changes to the sched ule from the
GUI as nceded. For example, the user could add an
Al 1_data_take activity. 1f this caused conflicts in the
sched ule, then ASPEN would resolve the conflicts. This
whole process takes seconds to execute. For example, with
the EO-1 model, if wc add three Al.1_data_ take activities in
the GUI (randomly placed), this causes 34 conflicts.
Resolving all conflicts, and producing a corrflict-free
schedule takes 1.54 seconds (on a SUN Ultra-2). This
means that it is solving approximately 17 conflicts per
second. (Adding just onc data-take activity causes a large
number of con flicts because of the constraints between
activities and the states required by different activi ties.)
Currently, activities can be given a particular score, and
high-level preferences (such as resource max usage) can be
indicated which aso determine scores for activities. The
generated schedule is then given a score based on the
activities scores. Using thisscore, the user can then choose
onc generated sched ule over another. Wc arc presently
working on an algorithm that will automatically optimize
schedules.

Limitations of ASPEN

The algorithms and data structures used in ASPEN impose
some limits on what ASPEN can model and solve. For
example, the iterative rcpair algorithm used to repair
sched ules and make them conflict-free is a local search
algorithm and therefore cannot solve problems where local
scarch techniques do not work. Wc are currently developing
a search agorithm framework which will alow many types
of search strategies (global and local) to beused in ASPEN.
In addition to the current local search algorithm constraint,
at present ASPEN also presumes that the units in tbc

timelines, which can take lincar or exponentia functions, arc
constant V&uc over a unit. In the future, ASPEN may have
units whose value varies over the unit, but now it is a known
limitation. L.astl y, although the modeling language is
expressive, itis limitedto what can be defined within the
existing modecling language syntax. For example, it is
currently difficult to model the power interaction between
the solar array and batterics. When the EO- | satellite is
occulted by the Earth, activities in the plan which usc solar
array power must instead usc battery power. Thereverse is
true when 110- | isin direct sunlight. I’ here arc also periods
where both solar array and batteries arc used for power duc
to partia illumination of (he solar array. Combining these
effects with the complex charging and discharging cycles of
the batteries creates a difficult prablemto model. Wc arc
currently improving the modeling language so complex
interactionssuch as these can be successfully modeled.

CONCIL.USIONS

Modeling EO-1 mission operations in ASPEN is easy and
compact. The entire 1i0-1model consisting of the activities,
parameters, reservations, resources, and state variables as
described above, is represented in approximately 700 lines
(in plain text files) which also includes comments and
headers. The simplicity of the modcling language will aliow
the operations personnel to easily change the model when
needed The changes will notrequire arccompile of the
code.

Wec have successfully modeled EO-1 mission operation
activities with ASPEN. Woc have created a model which
encapsulates information about: data takes, calibration
activities, maneuvers, uplinks, downlinks, validation
activities, cloud cover and sun angle states, and initialization
activities of power, propellant, and data storage. Using this
model with ASPEN will enable EO-1to function with a very
small operations team.

REFERENCES

11] J. Allen, J. Hendler, and A. ‘1’ ate, Readings in Planning,
Morgan Kaufmann, 1994,

['2] S. Chien, D. Decoste, R.Doyle, and P. Stolorz, “Making
an Impact: Artificial Intclligence at the Jet Propulsion
Laboratory," Al Magazine, 18(1), 103-122, 1997.

[3] A. Fukunaga, G.Rabidcau, S. Chien, and D. Yan,
"ASPEN: A Framework for Automated Planning and
Scheduling of Spacecraft Control and Operations,”
Proceedings of the Internationa 1 Symposium on Al
Robotics and Automation in Space (i-SAIRAS), Tokyo,
Japan, 1997.

[4] S.F. Smith, O. l.assila, and M. Becker, “Configurable
Mixed-Initiative Systems for Planning aund Scheduling,”
Advanced Planning Technology, AAAIT Press, 1996.

[5] 1). Speer, P. Hestness, M. Perry, and B. Stabnow, The
New Millennium Program EO-1 M ission and Spacecraft

1 esign Concept, In Proceedings of the 1EEE Acrospace
Confercnee, V. 4, pp. 207-227, Snowmass, CO, 1997,

[6] M. Zweben and M.
Morgan Kaufmann, 1994,

Vox, Intelligent Scheduling,

BIBLIOGRAPHY

Rob Sherwood is a Member of
Technical Staff at the Jet Propulsion
Laboratory, California Institute of
Technology. He holds a B.S. in
Aerospace Engincering Sfrom
University of Colorado at Boulder,
and a MS. in Mechanical
Engineering from the University of
California at Los Angeles. e is
currently pursuing an M.B.A. at
Loyola-Marymount University. Robert has received 4 NASA
Achievement Awards for his work in Spacecraft Mission
Operations. He is currently working on several projects
involving Planning and Scheduling technologies.

Anita Govindjee is a Member of
Technical Staff in the Artificial
Intelligence Group at the Jet
Propulsion Laboratory, California
Institute of Technology. She holds
a M.S. in Computer Science from
Stanford University and a B.S. in B R
Computer Science from the i, Z
University of Hlinois. Her vesearch » &
interests are in artificial intelligence and cognitive science.

David S Yanis a Member of the
Technical — Staff in the A
Intelligence Group at the Jet
Propulsion Laboratory, Ca liforn ia
Institute of Technology. He holds

a B. T. in Electrical Engineering

and Computer Science from the
University of California al
Berkeley. He 1S pursuing his M. S. degree in Compu ter
Science at Stanford University. His research interests
include automated planning/sch editling. operating Systems,
computer architecture and computer networks.

rtificial

Gregg Rabideau is a Meniber of
the Technical Staff in the Artificial
tntelligence Group at the Jet
Propulsion Laboratory, California
Institute of Technology. His main
focus is in research and
development of planning — and
scheduling systems for autonated
spacecraft commanding. Projects

include planning and scheduling for the first deep-space
mission of NA SA’s New Milleknium Program, and for

design trades analysis for the Pluto Express project. Gregg
holds both a B.S. and M.S. degree in Computer Science
from the University of Illinois where he specialized in
Artificial Intelligence.

Steve Chien is Technical Group
Supervisor of the Artificial
Intelligence Group of the Jet
Propulsion Laboratory, California
Institute of Technology where he
leads efforts in research and
development of automated
planning and scheduling systems.
He is also an adjunct assistant
professor in the Department of
Computer Science at the University of Southern California.
He holds a B.S., M.S., and Ph.D. in Computer Science from
the University of Hlinois. His research interests are in the
areas of: planning and scheduling, operations research,
and machine learning.

Alex S Fukunagais a Member of
the Technical Staff inthe Artificial
Iutelligence Group at the Jet
Propulsion Laboratory, California
Institute of Technology. He holds
an A.B. in Computer Science from
Harvard University, and a M.S. in
Computer Science from the
University of California at lLos
Angel es, where he 1S currently a
Ph.D. student. His research
interests include optimization, decision theory, scarch,
machine learning, and automated planning/sch edyling.

ACKNOWILEDGMENTS

This paper describes work performed by the Jet Propulsion
1 .aboratory, California Institute of Technology, under
contract Wwith the National Aeronautics and Space
Administration.

